The dwarf palm tree of the king: a *Nannorrhops ritchiana* in the 24th-23rd century BC palace of Jericho

Claudia Moricca, Lorenzo Nigro, Elisabetta Gallo & Laura Sadori

To cite this article: Claudia Moricca, Lorenzo Nigro, Elisabetta Gallo & Laura Sadori (2020): The dwarf palm tree of the king: a *Nannorrhops ritchiana* in the 24th-23rd century BC palace of Jericho, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, DOI: 10.1080/11263504.2020.1785967

To link to this article: https://doi.org/10.1080/11263504.2020.1785967
The dwarf palm tree of the king: a Nannorrhops ritchiana in the 24th-23rd century BC palace of Jericho

Claudia Moriccaa,b, Lorenzo Nigroc, Elisabetta Galloc and Laura Sadorib

aDepartment of Earth Sciences, Sapienza University of Rome, Rome, Italy; bDepartment of Environmental Biology, Sapienza University of Rome, Rome, Italy; cDepartment of Oriental Studies, Sapienza University of Rome, Rome, Italy

Abstract

Charred botanical finds from the excavation of the Early Bronze Age city of Jericho (Tell es-Sultan), one of the earliest urban centers of 3rd millennium BC Palestine, were collected during the 2015-2017 excavation seasons carried out by Sapienza University of Rome and the Palestinian MoTA-DACH. Among other plant macro-remains, a round fruit was found in the subsidiary room behind the throne room of Royal Palace G, next to a vase, in the burnt filling overlying the platform. It was identified as a drupe of a dwarf palm, through classical archaeobotanical techniques and computed tomography scan. Two dwarf palms were taken into consideration: the Mediterranean dwarf palm (Chamaerops humilis L.) and the Mazari palm (Nannorrhops ritchiana (Griff.) Aitch. native to the Saharo-Indian region), both with small, round/oval fruits, none of which currently grows in the area of Jericho. A detailed analysis of iconography, archaeobotanical literature and herbarium samples of both species stored in Rome (RO), Florence (FIAF) and Edinburgh (E), has allowed to identify the charred drupe as Nannorrhops ritchiana. Its presence in the palace suggests the existence of an overlandcommercial track to the south-east, across the desert of Saudi Arabia, which only recent excavations and other finds have revealed.

Introduction

Tell es-Sultan is located in the Jericho Oasis (Figure 1), 3 km from the centre of the present town of Ariha, in Palestine, at an altitude of 220 meters below sea level (Barkai and Liran 2008; Nigro 2014a). The climate of the area is classified as arid, with hot summers and warm winters with very rare frost incidents (Mimi and Jamous 2010). The present-day vegetation has been described as a Sudano-Deccanian enclave, constituted mostly of a Ziziphus spina-christi (L.) Desf. (Christ’s thorn jujube) - Balanites aegyptiaca Delile (desert date) association. Other species include Acacia tortilis (Forssk.) Hayne, Calotropis procera Aiton and Solanum incanaum L. (Zohary 1947). Ceratonia siliqua L. and Cupressus sempervirens L. are among the plants that have been adapted in the area of Jericho (Ighbareyeh 2019).

The Archaeological Expedition to Jericho of the Sapienza University of Rome and the Palestinian MoTA-DACH (Ministry of Tourism and Antiquities, Department of Antiquities and Cultural Heritage) has been committed in the excavation of the Early Bronze Age city of Tell es-Sultan, one of the earliest urban centers of 3rd millennium BC Palestine (Nigro and Taha 2009; Nigro et al. 2011; 2015; Nigro 2016; Nigro 2020a). Excavations unearthed a monumental fortification system (Areas B; F, L), the northern dwelling quarter (Area F), and royal Palace G, the major administrative center of the city.

A severe earthquake led to a sudden end of the life of the earliest fortified city of the Early Bronze (EB) II (Sultan IIib Period) towards the end of the 28th century BC (Nigro 2014b). The city was immediately rebuilt (2700-2500 BC, EB IIIA, Sultan IIIC1 Period), as the life resources of the city were not swept away by the upheaval. The reconstruction of the city, thus, became an opportunity to strengthen the defensive system, with the erection of a new double city-wall with rectangular towers and blind rooms in between the outer and inner city-walls (Sellin and Watzinger 1913; Garstang 1930; Garst 1931; Kenyon 1981; Marchetti and Nigro 1998; Nigro 2016). A major enterprise of this second urban stage was the reconstruction and enlargement of the palace on the eastern flank of the “Spring Hill” overlooking the spring and the oasis (Sellin and Watzinger 1913; Garstang 1932; Kenyon 1981; Nigro et al. 2011; Nigro 2016; Nigro 2017; Nigro 2020b). The palace was subdivided into three wings each on a different terrace descending down to the spring. The main entrance of the palace was on its southern side and opened onto a square in the main street which climbed the Spring Hill in a northerly direction. It led to the middle terrace, where a porch opened onto a hall with a raised podium on its north side, a reception suite, flanked by a small subsidiary room (Figure 2). Some stairs led to the upper storeys which presumably hosted the royal apartments.

The upper terrace was accessible directly from the main street, through a door in the western perimeter wall of the palace. It hosted industrial installations, with rooms for food preparation and other workshops (perhaps also a smith).
A third entrance to the palace was located on the eastern lower terrace and connected directly with the spring area and the market just inside the city gate. This door gave access to the administrative and storage wing of the building, and to a corner tower which possibly also served to control the access to the main street from the market area.

Several finds from the palace may illustrate multiple functions of this building. A copper axe and a dagger (with the preserved part of the handle) were found in the courtyard of the lower wing (Kenyon 1981; Nigro 2016; Nigro 2020b), while a basalt potter’s wheel (Dorrell 1983) and several stone tools, including grinding stones, pestles, polishing pebbles and flints were found in the upper western wing. In the central wing, big jars and pithoi belonged to the furnishings of the royal apartments (Nigro et al. 2011; Nigro 2020a).

The focus of this article is on a small subsidiary room behind the throne room of the palace, where a round stone platform was found abutting from a wall with two symmetrical high benches or niches. This installations was interpreted as a cultic one, because of the retrieval of the bull-shaped spout of a cultic vessel (Nigro et al. 2011; Nigro 2016). The vase, possibly a keros, was used for libation in front of a sacred image or plant, as often depicted in the art of the ancient Near East (see below).

The palace was destroyed by a fire that took place in ca. 2350 BC (Nigro 2017; Nigro 2020b).

Materials and methods

Botanical finds from the contexts referable to the final destruction of the city (ca. 2350/2300 BC, EB IIIB, Sultan IIIc2 Period), were collected by hand-picking during the 2015-2017 seasons in order to be AMS radiocarbon dated (Nigro et al. 2019).

Among the finds, a round fruit preserved by charring was found in the subsidiary room behind the throne room of the royal Palace G, next to a vase, in the burnt filling overlying the platform. The peculiar archaeobotanical reman was observed under a Leica M205C stereomicroscope at the Laboratory of Archaeobotany and Palynology in the Department of Environmental Biology of Sapienza University of Rome. High resolution images were acquired using the Leica IC80HD photo camera and to the program Leica Application Suite, version 4.5.0. These were later processed using Helicon Focus, version 6.6.1 Pro, which allows to blend together shots of the same sample taken at different focus. The precise measures of the fruit’s diameter were obtained using the ImageJ 1.51j8 software.

In order to assess the nature of the remain, a computed tomography scan was performed at the Radiology Department of the “Policlinico Umberto I” of the Sapienza University of Rome. Identification was carried out through the consultation of atlases (Neef et al. 2012), digitized herbarium samples from the Royal Botanic Garden of Edinburgh (2018) and from the Museum Herbarium of the Sapienza University of Rome, as well as fresh samples from the Botanical Garden of the Sapienza University of Rome.

Results

The observations under the stereomicroscope allowed to describe the fruit as globose, having a smooth and uniform surface without longitudinal grooves (Figure 3).

The specimen presents a stigma scar on its base and a pedicel scar on its apex. The measured diameter is of 12 mm. The computed tomography scan allowed to determine the presence of one endocarp, having a different density than the rest of the fruit, leading the specimen to be classified as a drupe (Figure 4), a fruit containing a stone seed.

The described features closely correspond to palm fruits. While five Arecaceae genera are currently found in the Mediterranean basin and the Near and Middle East (Chamaerops, Hyphaene, Medemia, Nannorrhops and Phoenix; Dransfield et al. 2014), only the fruits of Chamaerops humilis L. (Mediterranean dwarf palm) and Nannorrhops Ritchiana (Griff.) Aitch (Mazari palm or dwarf palm) correspond to the description. The two species are very similar to each-other and none of them currently grows in the Levant.

The Mazari palm (Figure 5) is a small gregarious perennial palm, with grayish green leaves, which is able to reach a height of approximately 5 meters in optimal conditions. Native to the deserts of the Saharo-Indian region, it is known as one of the most robust and versatile palms, being able to tolerate temperatures as low as −12 °C, but also extreme heat, insufficiency of water and harsh winds (Mahmood et al. 2017; Naseem et al. 2005). N. Ritchiana’s fruits are described by Malik (2011 as globose or ovoid drupes of variable size in the range of 6-18 mm. Khodashenas et al. (2016) narrow the size range down to 10-13 mm.

Chamaerops humilis, the Mediterranean dwarf palm (Figure 6), the only palm native to Europe, closely resembles N. Ritchiana. On average, it grows between 1 to 1.5 meters in mean height, but in protected areas it can reach a height of 10 meters (Benmehdi et al. 2012). C. humilis’s underground rhizome produces shoots with palmate, sclerophyllous leaves. Like the Mazari palm, the Mediterranean fan palm is very tolerant to disturbance, being able to survive deforestation, fires, pasturing and cold temperatures (as low as −9 °C; Bannister 2007; Herrera 1989). C. humilis fruits closely resemble the description of the charred specimen, being classified by Pignatti (1982) as subspherical and ovoid with size comprised between 1-3 cm. Herrera (1989) adds that they are dully yellow to brown when ripe and contain a single, stony seed. Likewise, Morales et al. (2016) describe them as globular reddish-brown drupe, oblong or ovoid, measuring 1-4 cm.

Among the two, the analyzed remain fits more closely the description of N. Ritchiana for the quasi-spherical shape, while size is not a discriminating feature.

Although in literature the drupes of the two species are described as being very similar, herbarium samples show otherwise. While N. Ritchiana fruits (Figure 5) are proven to be round, C. humilis fruits are clearly more elongated (Figure 6). This points towards an identification of the charred remain as a Mazari palm fruit.
Figure 1. General map of the Near East, Egypt and Saudi Arabia Peninsula. Main archaeological sites are reported. The underlined names refer to sites quoted in the text.
Despite of both the fruits of *Chamaerops humilis* and *Nannorrhops ritchiana* roughly fitting the description, being ovoid and having a diameter of ca. 1 cm, we are confident in identifying the specimen from Tell es-Sultan as *Nannorrhops ritchiana*. This is motivated by Mazari palm fruits being more round than the ones of the Mediterranean dwarf palm, as can be observed by comparing the specimen of *C. humilis* from two Italian herbaria, *Herbarium Cesatianum* stored at the Sapienza University of Rome Herbarium (RO; Figure 5; Millozza and Giovi 2008) and *Herbarium Universitatis Florentinae* in Florence, with the digitized herbarium sample of *N. ritchiana* from the Royal Botanic Garden of Edinburg (E; Figure 6).

The find of a drupe of dwarf palm proves to be of great interest in the site of Tell es-Sultan, as it represents the first such archaeobotanical record in the area. The peculiarity is enhanced by the fact that no dwarf species currently grows in the area of Jericho. The present geographical distribution of *Nannorrhops ritchiana* is currently represented by the semi-desert areas of the Middle East (Iran, Afghanistan, Pakistan and Saudi Arabia; Kubitzki 1998; Gratzfeld and Khan...
In contrast, *Chamaerops humilis* covers the central and western Mediterranean, including both the European side (S Portugal, S and E Spain, SE France, W Italy and Malta) and African countries (Morocco, N Algeria and N Tunisia; Garcia-Castano et al. 2014; Guzmán et al. 2017).

Ethnobotanical and medicinal studies of the Mazari palm have attributed it many uses and properties, which may have influenced its importation to Jericho. Leaves are used for basket and rope making, the dried plant can be used as fuel, the ash as a coloring material. The principles extracted from the leaves have proven to be successful for the treatment of diarrhea and dysentery. They are also used as a purgative in veterinary practice (Marwat et al. 2011; Zabihullah et al. 2006). Inflorescences and fruits are used as food (Johnson 1987). In particular, fruits are, in contrast with leaves, consumed for their laxative and purgative properties (Hussain et al. 2018). Finally, seeds are used as beads, in India they are chosen specifically for rosaries (Khan and Shaukat 2006).

Archaeobotanical evidence of dwarf palms

Some considerations may be done on the geographical distribution of archaeobotanical and historical attestations of *Nannorrhops ritchiana* and *Chamaerops humilis*. Most records of the Mazari palm are restricted to sites in Pakistan, where they are found in the form of seeds and fruits. Endocarps or fragments of endocarps were found in the 4th-2nd millennium BC sites of Miri Qalat and Shahi-Tump in the Kech valley (Tengberg 1999; Besenval et al. 2005). Fruits of *N. ritchiana* were found in samples from Period III (ca. 2700-2400 BC) in Sohr Damb, a prehistoric site in Central Balochistan, Pakistan (Neef et al. 2012). The possibility of such plant being cultivated is taken in consideration, although gathering from the wild is not excluded (Benecke and Neef 2003). Additionally, phytolith studies have allowed to identify *N. ritchiana* as the plant used for making a protohistoric net, preserved by charring in the site of Shahi-Tump (Baluchistan, Pakistan) after a fire partly destroyed a 4th millennium BC building (Thomas et al. 2012). These sites are all located within a radius of less than 500 km from each other, but 3000 km away from Madâ’in Sâlîh (in Saudi Arabia), where charred stems of the Mazari palm, identified based on the anatomy of the fibrous vascular bundles, have been found in domestic contexts (Bouchaud et al. 2011). Although more recent (2nd century BC - 7th century AD) than the find from Tell es-Sultan, this advances the idea of *N. ritchiana* being exchanged through commercial routes with the Middle East since earlier on.

The archaeobotanical and historical attestations of *Chamaerops humilis* reflect its present distribution, being restricted to the coasts of the Western Mediterranean. Stones of the Mediterranean dwarf palm were found in the Iberian Peninsula in the Iron Age site of Huelva (Pérez-Jordà et al. 2017), in the 6th millennium BCE site of Cova de les Cendres (Alicante) and in Morocco (Peña-Chocarro et al. 2015). Remains of the Mediterranean dwarf palm were also found in Early Neolithic sites of São Pedro de Canaferrim and Lapiás das Lameiras in Sintra, Portugal (López-Dóriga 2018). Charcoal fragments dating to the 1st century AD were retrieved in a garden of a rich domus in the ancient Roman town of Privernum, in southern Latium (Sadori et al. 2010). The Mediterranean dwarf palm is also mentioned by the Roman author Pliny the Elder in his *Naturalis Historia* (Gleason 2019). *C. humilis* pollen also represents an evidence
worth of notice, being found in the Mid- to Late-Holocene site of Sierra de Gádor in Southern Spain (Carrión et al. 2003), in Holocene sediments from Gorgo Basso (Tinner et al. 2009) and of Biviere di Gela, both lakes on the southern coast of Sicily (Noti et al. 2009). The only find of the Mediterranean dwarf palm which falls outside its present distribution area is represented by ropes from the 9th century AD Bozburun Byzantine shipwreck, Turkey, identified as being made of C. humilis fibers based on the diagnostic cell patterns of the epidermal tissue retrieved (Gorham and Bryant 2001). Such location is set at roughly 900 km from the site of Tell es-Sultan. However, it should be considered that the find dates to the 9th century AD, much more recent than the find from Jericho. Additionally, C. humilis is there found in the form of fibers used in rope making, therefore not testifying the use of its fruits or of the whole plant.

The iconography of the sacred tree in the near east

The retrieval of a palm fruit in the small room behind the throne room of the EBA palace of Jericho also proves to be of great interest from an archaeological perspective. The first depictions of palm-like objects in art date back to the 6th – 5th millennia BC, before the beginning of literacy, being engraved on bones from the sites of Neve-Yam and Hagoshrim in Northern Israel, and interpreted as the portrayal of a tree goddess (Orrelle and Horwitz 2016). More
frequent iconographic representations of a sacred palm-like tree date back to as early as 3000 BC, when Sumerians are supposed to have started date palm cultivation (Nixon 1951), and include depictions on a bronze axe found in Byblos (Nigro 2003). Sacred plants worshipped by priests, kings and even hemi-mythic beings are known from Mesopotamian art (in glyptic of Akkadian, Old-Babylonian, Kassite, Assyrian), and there is evidence in several palaces (from Kish to Mari) of the presence of trees and plants for ornament or symbolic functions. The motif continues to be seen until the end of the first millennium, with a great degree of individual variability. Despite of this, it can be summarized as featuring a series of peculiar characteristics. These consist of “a trunk with a palmette crown standing on the stone base and surrounded by a network of horizontal or intersecting lines fringed with palmettes, pinecones, or pomegranates” (Parpola 1993).

Due to the absence of cuneiform sources expressly mentioning the tree species, scholars have developed several interpretations, without reaching a consensus on its iconography. There are three main interpretations: a) that it represents the “tree of life”; b) a date palm; c) a constructed cult object (Giovino 2007).

Although the date palm theory appears to have overpowered the other two, Giovino (2007) believes that the interpretation as a constructed cult object is much more promising. Langdon (1919), observing the Assyrian Sacred Tree (AST) against other Near Eastern examples, noticed that the image of worshippers before the AST was mirrored in their depiction in front of human-form or aniconic representations of gods, such as a spade and wedge, using the same gesture of worship in both cases.

Interestingly, the recovered charred fruit belongs to a different palm species than the one corresponding to the most widely accepted interpretation of iconography. It is possible that the adoration was not directed specifically to the date palm tree, but rather to a general tree or tree-like object, such as the 8th century BC “artificial tree” evidence found in Neo-Assyrian royal city of Khorsabad during mid-19th century excavations (Giovino 2007). Such evidence is constituted by large pieces of bronze sheathing embossed with the design of palm tree trunk scales or imbrications which had once been nailed to a shaft of cedar 9 m long and 0.5 thick, resulting in a metal encased pole. For this reason, a dwarf palm would have served as a perfect substitute. The small dimensions of Nannorrhops ritchiana made it more suitable for cultivation inside the palace or in sacred buildings. An additional prestige might have been given by the fact that the Mazari palm has medical properties and that it must have been imported from further areas. The latter fact also

Figure 7. Present distribution map of Chamaerops humilis (green; from Garcia-Castano et al. 2014) and Nannorrhops ritchiana (striped orange; from Palmweb 2019). A proper distribution map was not available for the latter, therefore whole countries where the palm is found have been highlighted. The red pin indicates the archaeological site of Tell es-Sultan (Jericho). Pink pins indicate the archaeobotanical findings of C. humilis: 1. São Pedro de Canaferrim and Lapiás das Lameiras in Sintra (charcoal); 2. Huelva (stones); 3. Sierra de Gador (pollen); 4. Cova de les Cendres (stones); 5. Priverno (charcoal); 6. Gorgo Basso (pollen); 7. Biviere di Gela (pollen); 8. Bozburun (fibres). Blue pins indicate the archaeological sites where N. ritchiana remains were found: 9. Madâ’in Sâlih (charcoal); 10. Shahi-Tump (endocarps, phytoliths); 11. Sohr Damb (fruits); 12. Miri Qalat (endocarps).
suggests the existence of an overland commercial track to the south-east, across the desert of Saudi Arabia, which only recent excavations and other finds have revealed.

Conclusions
The presence of Nannorrhops ritchiana in the area of Jericho represents a novelty as this species does not grow in the area and has not been attested there in the past. It is therefore believed that the fruit could have arrived from the desert areas of either the Southern Arabian Peninsula or the Middle East through a commercial network. The Mazari palm, and in particular its fruits, could have been traded due to its widely attested medical properties. However, the context of retrieval, the room adjacent to the throne room, along with Near Easter iconography, rather suggests a sacred use of N. ritchiana.

This helps to backdate the possible use of the dwarf palm as a religious symbol/cult object. Recent finds in the northwestern Arabian oases of Qurraya and Tabukm, may ante-date direct contacts between the Southern Levant and the Arabian Peninsula to the Early Bronze Age. Connections between Tayma and the Levant are demonstrated for the final stage of the period (Early Bronze Age IVB) and in the following Middle Bronze Age, and accentuated during the Late Bronze Age (LBA), when political and commercial contacts extended to Egypt, the Mediterranean, Assyria and Babylonia (Liu et al. 2015). The establishment of actual trade routes between the southern Arabian Peninsula and the Levant is dated to the LBA, involving the trade of incense and copper (Liu et al. 2015), enriched during the Early Iron Age with the trade of iron (Renzi et al. 2016). Although the cited studies refer to more recent archaeological periods, it is evident that this geographical area represented a fundamental junction point between Mesopotamia and the Eastern Mediterranean. Through the presentation of few, but significant data, the present study allows to hypothesize contacts with the southern Arabian Peninsula earlier than has been previously suggested, providing a new perspective on Middle Eastern trade routes.

The find of further archaeobotanical remains (charcoals, pollen, phytoliths) could help in defining whether the Mazari palm was locally grown or, as appears to be more probable, was found at Jericho as a result of commercial exchanges. Archaeological issues at the site of Tell es-Sultan could help to shed some light on the issue.

Acknowledgements
The authors would like to thank the MOTA-DACH of the Palestinian National Authority for its support and constant cooperation to the research activities of Sapienza University Expedition. An acknowledgement goes to Anna Millozza and Agnese Tilia for helping in the research of dwarf palm specimens and for the digitalization of the Chamaerops humilis specimen found at the Sapienza University Herbarium of Rome, Flavio Tarquini from the Botanical Garden of the Sapienza University for providing fresh specimens of unfertilized fruits of Nannorrhops ritchiana, Lesley Scott from the Royal Botanic Garden of Edinburgh for readily providing digitized images of Nannorrhops ritchiana samples, Silvia Capuani from the Institute for Complex Systems of the National Research Council (Consiglio Nazionale delle Ricerche - CNR) and PhD candidate Sveva Longo from the Physics Department of the University of Messina for performing the CT scan and processing the images.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This article is a product of the PeMSea Project [Prin2017] (A3. Food traditions & food plants) funded by the Italian Ministry of Scientific Research and University. Ministero dell’Istruzione, dell’Università e della Ricerca.

ORCID
Claudia Moricca http://orcid.org/0000-0001-5288-300X
Lorenzo Nigro http://orcid.org/0000-0003-3262-315X
Laura Sadori http://orcid.org/0000-0002-2774-6705

References